—— PROUCTS LIST
【THUNDER小課堂】高對比度快速成像
對小鼠肺組織進行高對比度快速成像,可以對肺血管係統的內(nei) 皮網絡和支持細胞進行可視化研究。
本文介紹了在小鼠肺標本中如何利用THUNDER Imager 3D Cell Culture熒光顯微鏡和即時光學解析(ICC)技術有效地研究控製肺血管形成和維持的細胞和分子機製,以及當肺血管疾病發生時出現的相應問題。肺血管係統是由內(nei) 皮細胞組成的分支管狀網絡,這些內(nei) 皮細胞排列在血管上,和支持細胞構成了血管壁。
從(cong) 健康角度來看,識別在肺動脈、靜脈和毛細血管發育過程中形成肺血管的細胞群類型是很有趣的,有助於(yu) 它們(men) 的維持和修複,以及研究這些細胞的行為(wei) 和調控信號。
小鼠肺組織圖像:(左)原始寬場圖像和(右)使用Instant Computational Clearing(ICC)技術後的THUNDER高清圖像。圖片來源:美國加利福尼亞(ya) 州Ross Metzger博士。
簡 介
肺血管疾病的研究涉及多種方法來探索影響疾病的細胞和分子程序[1,2]。肺血管從(cong) 胚胎期開始發育,並在出生後繼續。肺的支管網絡由內(nei) 皮細胞和支持細胞組成。為(wei) 了更好地了解血管疾病,科學家研究了形成肺血管的細胞,以及那些有助於(yu) 血管修複的細胞[1,2]。
由於(yu) 管狀結構,以及肺標本很容易有數百微米厚,因此可視化內(nei) 皮細胞和支持細胞網絡的發育以及血管係統的維持jiju挑戰。此處的報告結果展示了如何使用THUNDER Imager 3D Cell Culture顯微鏡,在小鼠肺組織中有效研究肺血管疾病的機製[3,4]。
挑 戰
在肺組織成像時想要獲得真實結果,擁有一種可以快速獲取高對比度三維圖像的解決(jue) 方案非常關(guan) 鍵,確保其中的重要細節得到清晰呈現。傳(chuan) 統的寬場顯微鏡能夠對這些厚標本的大麵積成像,這種顯微鏡速度快,檢測靈敏度高,但由於(yu) 非焦信號的幹擾,圖像模糊,對比度顯著降低[3,4]。
方 法
使用THUNDER Imager 3D Cell Culture顯微鏡對小鼠肺部標本進行成像。使用FITC、Cy3以及Alexa 633對標本進行免疫染色。為(wei) 了可視化整個(ge) 肺組織標本,使用20x Plan Fluo Apo 0.4 NA(數值孔徑)物鏡以及三個(ge) 熒光通道。為(wei) 覆蓋280µm厚度的樣品,采集的圖像顯示為(wei) 由115層光學切片組成的擴展景深(EDoF)投影。
結 果
THUNDER Imager 3D Cell Culture可以快速獲取肺組織的三維圖像,然後通過Instant Computational Clearing(ICC)技術去除寬場圖像中會(hui) 降低對比度的模糊信號(參見圖1)[3,4]。ICC可以呈現肺組織圖像中的精細結構和細胞水平分辨率,以研究影響肺血管疾病的發育、維持和修複活動[1,2]。
整個(ge) 組織圖像采集時間約1min(參見圖1)。
圖1:小鼠肺組織標本的擴展景深(EDoF)投影:A) 原始寬場圖像,B) Instant Computational Clearing(ICC)後的高清圖像。
圖片來源:美國加利福尼亞(ya) 州Ross Metzger博士。
結
論
使用THUNDER Imager顯微鏡的Instant Computational Clearing(ICC)技術[3,4]可以對小鼠肺血管疾病相關(guan) 的細胞機製進行有效研究。因為(wei) 與(yu) 傳(chuan) 統的寬場成像相比,該技術顯著提高了圖像對比度。
References:(上下滑動查看更多)
1.L.C. Steffes, A.A. Froistad, A. Andruska, M. Boehm, M. McGlynn, F. Zhang, W. Zhang, D. Hou, X. Tian, L. Miquerol, K. Nadeau, R.J. Metzger, E. Spiekerkoetter, M.E. Kumar, A Notch3-Marked Subpopulation of Vascular Smooth Muscle Cells Is the Cell of Origin for Occlusive Pulmonary Vascular Lesions, Circulation (2020) vol. 142, no. 16, pp. 1545–1561, DOI: 10.1161/CIRCULATIONAHA.120.045750.
2.M. Boehm, X. Tian, Y. Mao, K. Ichimura, M.J Dufva, K. Ali, S. Dannewitz Prosseda, Y. Shi, K. Kuramoto, S. Reddy, V.O. Kheyfets, R.J. Metzger, E. Spiekerkoetter, Delineating the molecular and histological events that govern right ventricular recovery using a novel mouse model of pulmonary artery de-banding, Cardiovascular Research (2019) vol. 116, iss. 10, pp. 1700–1709, DOI: 10.1093/cvr/cvz310.
3.J. Schumacher, L. Bertrand, THUNDER Technology Note: THUNDER Imagers: How Do They Really Work? Science Lab (2019) Leica Microsystems.
4.L. Felts, V. Kohli, J.M. Marr, J. Schumacher, O. Schlicker, An Introduction to Computational Clearing: A New Method to Remove Out-of-Focus Blur, Science Lab (2020) Leica Microsystems.